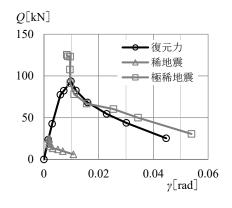
『伝統的構法のための木造耐震設計法』第2版 正誤表

本書第2版において下記のとおり誤りがございました。

深くお詫び申し上げますとともに、ここに訂正させていただきます。


なお現在、本書は第3版を発行しており、下記の内容は修正いたしております。

2025年6月17日 学芸出版社

章	頁	行	誤	正					
はじめに	2	上9	法改正に伴い、「4 号建	旧 4 号建築物相当					
12 L &) IC		上.9	築物相当」修正						
はじめに	2	上10	法改正に伴い、「置かれ	(2025年4月1日施行の建築基準法改正では、小規					
12 L &) IC		上. 10	ることとなった。」の後	模な伝統的木造建築物等について、構造設計一級					
			に追加	建築士が設計又は確認を行い、専門的知識を有す					
				る建築主事等が建築確認審査を行う場合は、構造					
				計算適合性判定が不要となった)。					
1章	15	最初の行	加速度応答スペクトル	必要性能スペクトル:等価な1質点系モデルに作					
			の次に追加	用する地震力と変形を表す。稀に発生する					
				地震動、極めて稀に発生する地震動などに					
				対応して等価周期と等価減衰から決まる加					
				速度応答スペクトルをせん断力と変形の関					
				係に変換したスペクトル(例えば図 5.14 中					
				の破線)と原点から等価剛性(周期)の傾					
				きを持つ直線との交点が求まる。変位の増					
				分に対応して等価減衰を変化させて両者の					
				交点を結んで描いた線(図 5.14 中の太い実					
				線)が必要性能スペクトルとなる。この必					
				要性能スペクトルと建築物の等価復元力の					
				交点が真の応答値となる。					
1章	16	上7	と記していている箇所	と記している箇所					
1章	17	上7	Rc_0	Rco					
3 章	38	下 6	加速度応答スペクトル	加速度応答スペクトル(<u>S_{Ad}、S_{As})</u> を算定する。					
			を算定する。						
5章	68		(5.9)式左辺の h	h_{eq}					
5章	71	上3から8	「各ステップ…になる。	本マニュアルの近似応答計算では、変位(変形					
			こうして、」を変更	角 γ) を増分させてステップごとに仮の応答値(変					
				形、せん断力) (γ_n, Q_n) を計算する。各ステップ					
				での建築物の等価減衰に対応した加速度応答スペ					
				クトルをせん断力と変形の関係に変換したスペク					
				トル(図 5.14 中の破線)と等価剛性の傾きを持つ					
				直線との交点が各ステップでの仮の応答値とな					
				る。各ステップごとの仮の応答値を結んだ線(図					
				5.14 中の太い実線)を必要性能スペクトルと呼ぶ。					
				この必要性能スペクトルと建築物の等価復元力の					
				交点が真の応答値(γ_R , Q_R)となる。実際の計算で					
				は、					

5章	75	下2	$\gamma_2 = \delta_2/H_2$	$\gamma_2 = (\delta_2 - \delta_1) / H_2$
7章	92	下3	断面係数計算軸に対し	断面係数計算軸(断面を2等分する位置に仮定)
			て対称近似している。	に対して対称近似している。
7章	108	最下行	追記	特に、下屋がある場合には隅角部、外周部の柱
				脚については注意を要する。
7章	109	上 15	④礎石に関する留意点	柱脚に作用する水平力の割増係数 k は、平成 24
			の前に追加	年度に検討委員会において実施した E ディフェン
				ス震動台実験で伝統構法石場建て部分2階建て下
				屋付き試験体 (試験体 No.5 (地長押なし)) による
				実験を詳細に検討した結果から、曲げ剛性に応じ
				て割り振った曲げモーメントの対応関係による割
				増係数を提案した。同時に行った実験(試験体 No.6
				(地長押あり))から、②柱脚の移動に伴う留意点
				でも記したように外周部や主要な通りなどの柱脚
				部に地長押などを設けることは、柱脚の折損に対
0 *	0.0 8	POTEIN A		して有効であることがわかった。
9章 設計資料 2	1	おは別途	(1)嫁纳工二九六烷红田	プジャン 五日 上肌の図に关し 挟る
	254	図 2.3 表 2.2	(c)縮約モデル応答結果 エクセルシートに誤り	正誤表3頁目上段の図に差し替え
設計資料 2 設計資料 2	255 265	下 2	(2.37)式	正誤表 4 頁目の表に差し替え (2.38)式
設計資料3	282	上1	(壁剛性(鉛直構面剛性)	(2.38) A (壁剛性(鉛直構面剛性) k に対する床剛性 s の比)
取引其付3	282	<u></u> 1	sに対する床剛性kの	(生門1生(新巨) 日間門生/ (に対りる) (1)
			比)	
	292	上22	×180mm	×18mm
設計資料 4	305	下 6	τ_S/τ_B	τ_B/τ_S
		下7	-5 ·D	- D - G
設計資料 4	305	式 4.31	3.25τ _S (2 カ所)	$3.25\tau_B$
設計資料 4	306	式 4.32	$ au_B$	$ au_S$
設計資料 4	314	上4	鼻栓打・ち込み栓打ち割	鼻栓打ち・込み栓打ち・割り楔締め
			り楔締め	
設計資料 4	328	上6	実験によるとでは、	実験によると、
設計資料4	332	表 4.14	東 45×60mm の値	正誤表3頁目中段の表に差し替え
設計資料4	333	図 4.52		正誤表3頁目下段の図に差し替え
設計資料 4	337	上7	「あり、…見直しがあり	ある。東の突出による耐力増大は実験的に認めら
			うる。」を変更	れるものの、ばらつきもあり、まだ定量的に十分
				に検証できていないので、増大率を設計に組みこ
				むことは難しい。今後、東突出の増大効果などは
				部材の降伏・破壊などの性状を含め、より多くの
				実験による検証とともに理論解析的な検証も行う
2.2.2.				必要がある。
おわりに	348	下 6	法改正に伴い、「4号相	旧4号建築物相当の小規模な伝統的木造建築物等
			当の建築物を構造計算	について、構造計算適合性判定の対象外となる規
			適合性判定の対象から	定が制定されたが、対象外となる要件が厳しいの
			除外するとともに」を変	で、要件が整う環境の整備や要件の見直しととも
			更	12

■254 頁、図 2.3(c) 差し替え

(c)縮約モデル応答

■332 頁、表 4.14 差し替え

表 4.14 特定回転角時の曲げモーメント M(仕口 1 カ所あたりの復元カモーメント) [kN·m]

回転角	[rad]	1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
	$[\times 10^{-3} \text{rad}]$	2.08	4.17	8.33	11.11	16.67	22.22	33.33	50.00	66.67	100.00
束45	5 × 45mm	0.04	0.09	0.19	0.25	0.38	0.51	0.69	0.83	0.94	1.13
東45	5 × 60mm	0.06	0.12	0.23	0.31	0.47	0.63	0.86	1.03	1.15	1.36
東60	東60×60mm		0.14	0.28	0.37	0.56	0.74	1.13	1.49	1.71	2.06
束60	束60×75mm		0.17	0.34	0.46	0.69	0.91	1.36	1.72	1.96	2.35
束60	束60×90mm		0.19	0.38	0.51	0.77	1.04	1.47	1.85	2.10	2.54
東75	東75×120mm		0.54	1.08	1.46	2.05	2.36	2.78	3.25	3.63	4.31
束90	× 150mm	0.47	0.94	1.87	2.63	3.66	4.24	4.98	5.78	6.47	7.67

■333 頁、図 4.52 差し替え

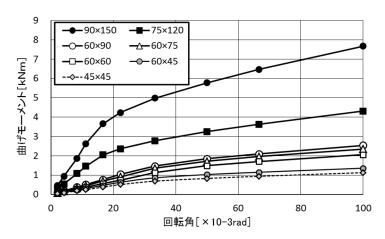


図 4.52 はしご型フレームの復元力特性(仕口 1 カ所あたりの復元力モーメント)

■255 頁、表 2.2 差し替え

表 2.2 2 階先行降伏:収斂計算法 2(2 階基準ステップ)

				表 2.2	2 泊元			計算法		卒牛へ	· / ' / /		Y	
			<i>₿</i> 計算法 2	С	2 階基準	E	F	G	Н	I	<u> </u>	<u>K</u>	<u>L</u>	M
1	2	<u> </u>												
1							C_i						g_v	
Fig. So S.2 3 1446 103 103 105 108 108 108 108 109							0.064							
											地盆性別			
18 19 19 19 19 19 19 19	7					111.0	1.033						1 02	0.001
		復元	-		1/400	1/240	1/120	1 /00	1/60	1/45	1/20	1.00	1 /1 7	1/10
	}			0										
18	}				14.9			55.1						
14 1.5	j			0										
15 内の														
16 10 17 18 18 19 19 19 19 19 19	-		KIVIII				_							
日野田本 1999 1世田本 1990	ļ	ω^2	1/s ²		270.5	248.0	225.4	187.9	150.3	108.0	65.8	37.6	23.5	9.4
19 日本語子の歌語 1 180 120 110 180 148 148 150 120 115 110 110 12	17	u_2/u_1			2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257
19 日本語画の 19 19 19 19 19 19 19 1		1 質点系へ	の縮約		1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
23 6 10	}	2 階刻 δ2-δ1			0.005	0.010	0.020	0.027	0.040	0.053		0.120		0.240
35		c 細胞病	1	ı	0.004						0.064	0.005	0.127	0.101
29 分元 10 10 10 10 10 10 10 1	j			インブット										
25 6.48 1.00				12771										
27 Kar 中野峰 kwm 5947 5.798 5.310 5.251 5.140 5.246 5.439 5.586 5.762 5.947 28 m²* 10² 2.275 2.275 2.359 2.372 2.703 3.195 4.389 7.373 13.291 22.050 5.7290 30 5 m 7 つトブト 0.004 0.007 0.015 0.016 0.018 0.016 0.013 0.010 31	25	δ_I/H_1			0.0013	0.0025	0.0049	0.0052	0.0061	0.0053	0.0042	0.0033	0.0026	0.0014
28 xg	}								_					
29 19 19 19 19 19 19 19	}	Kel* 竹抻												
50	}	u_2/u_1*	1/3											
32			m	アウトプット					0.018	0.016			0.008	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		欧団の河南	1 形比 1.	I	0.050	0.050				0.050	0.050	0.050	0.050	0.050
35	}													
16			210 %		0.050									
37 M/25m	·													
38 Q _c kN 0 23.7 42.7 77.4 82.2 93.7 82.6 68.3 54.5 43.8 25.4 97 K _c kN m 3.322 3.103 2.287 2.453 2.016 1.457 85.0 45.9 27.6 10.6 10 T _c see 0.38 0.39 0.41 0.43 0.46 0.51 0.62 0.80 0.99 1.54 11 MW ^{10 m} 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.422 2.29 12.59 13.44 12 W ^{10 m} 0.08 0.29 1.06 1.38 2.18 2.34 2.74 3.24 3.47 3.03 13 Mi			m											
99			kN	0										
## 27 ## 2		K_e			3,322	3,103		2,453	2,016			459	276	
22 $W^{\otimes \otimes}$ 0.08 0.29 1.06 1.38 2.18 2.34 2.74 3.24 3.47 3.03 3.44 F ₅ 1.00 1.00 1.00 0.050 0.050 0.050 0.050 0.050 0.054 0.173 0.278 0.339 0.403 4.44 F ₅ 1.00 1.00 1.00 1.00 0.91 0.82 0.71 0.61 0.55 0.52 0.50 0.50 4.50 1.50 1.50 1.50 1.50 1.50 0.50 0.050	j	T _e	sec											
## 解析 # 単元	}													
44 Fa	·													
16		F_h												
72		H_e	m	0										
148 Q-y-公司配 kN/rad 14.977 13.082 11.570 3.881 4.356 -6.133 -3.351 -1.972 -1.496 -1.267		γ_e	rad											
99 2階種で ρ 0.85 0.8	·	Qe-γe 勾配	kN/rad		14,977	13,082	11,570	3,881	4,356	-6,133	-3,351	-1,972	-1,496	-1,267
技術の	j	2 階建て p												
53 精地震		り 抽般 C												
54 So m/s² 1.60 1.10 0.00 56 Soe-de m 0.008 0.008 0.009 0.009 0.001 0.011 0.016 0.026 0.036 0.058 57 Qe kN 0 25.0 24.7 24.6 21.5 18.3 15.6 13.4 12.1 10.0 6.1 58 n n 0.017 0.0018 0.0019 0.0019 0.0022 0.033 0.0519 0.0011 0.0011 0.0019 0.0022 0.033 0.0014 0.004 0.002 0.003 0.003 0.003 0.003 0.003	52				1									
	·													
56 Sp=Ac m														
58					0.008			0.009				0.026	0.036	
59	}	Q_n	kN											
60	}	γ_n	rad	0							ļ			
6/2 交差判定 0 1 0		<i>Q_n-γ_n</i> 勾配	kN/rad											
$\frac{\partial Z}{\partial R}$ m	61					1	0	Ó	0	0	0	0	0	
64	-	δ_{R2}	m	0	0.010									0.059
Fig. 2 Fig. 2 Fig. 3 1/453 1/415 1/377 1/344 1/308 1/238 1/153 1/90 1/66 1/41	64				0.004	0.004	0.005	0.004	0.004	0.003	0.002	0.002	0.002	0.001
1/453	·	γ _{R2}	rad	0										
Ref Part		•		0										
1/480	68	γR1	rad		+									
71 S_0 m/s^2 8.00 9.00	}t	据经址	h雲		1/490									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	}													
$\frac{74}{75}$ $\frac{Q_n}{\gamma_n}$ $\frac{kN}{rad}$ $\frac{0}{125.2}$ $\frac{123.4}{123.2}$ $\frac{123.2}{107.6}$ $\frac{107.6}{91.3}$ $\frac{91.3}{78.1}$ $\frac{78.1}{66.9}$ $\frac{66.9}{60.3}$ $\frac{50.0}{50.0}$ $\frac{30.6}{30.6}$ $\frac{75}{76}$ $\frac{7}{\gamma_n}$ $\frac{1}{rad}$ $\frac{0}{17120}$ $\frac{1}{1714}$ $\frac{1}{1704}$ $\frac{1}{1705}$ $\frac{1}{1704}$ $\frac{1}{1790}$ $\frac{1}{164}$ $\frac{1}{139}$ $\frac{1}{129}$ $\frac{1}{179}$ $\frac{1}{179}$ $\frac{77}{78}$ $\frac{Q_n\gamma_n}{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ \frac					10.20		10.20	9.32	8.40	8.02	8.01	8.19	7.28	
75	-			_										
76 y_n rad y_n		Q_n	kN											
$\frac{77}{89}$ 交差判定		γn	rad	<u></u>										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~ .	kN/rad		14,977			187,106	-124,171		-2,459	-673	-1,143	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 79	交差判定		0		0			0				0	<u> </u>
82 yR2 rad 0 0.011 0.012 0.013 0.015 0.016 0.021 0.033 0.055 0.076 0.121 83 1/91 1/83 1/75 1/69 1/62 1/48 1/31 1/18 1/13 1/8 84 1/91 1/82 0 0.007 0.008 0.007 0.006 0.005 0.004 0.004 0.003 0.002	}													
83	}	δ_{R1}	m	0										
84 70 rad 0 0.007 0.007 0.008 0.007 0.006 0.005 0.004 0.004 0.003 0.002	j	γ _{R2}	rad											
85 ' 1/142 1/141 1/129 1/146 1/169 1/201 1/244 1/278 1/346 1/583	84	V _D 1	rad	0	0.007	0.007	0.008	0.007	0.006	0.005	0.004	0.004	0.003	0.002
	85	141			1/142	1/141	1/129	1/146	1/169	1/201	1/244	1/278	1/346	1/583