本書第1版において下記のとおり誤りがございました。

深くお詫び申し上げますとともに、ここに訂正させていただきます。

なお現在、本書は第3版を発行しており、下記の内容は修正いたしております。

2025年6月17日 学芸出版社

章	頁	行	誤	正
はじめに	2	上9	法改正に伴い、「4 号建築	旧4号建築物相当
			物相当」修正	
はじめに	2	上 10	法改正に伴い、「置かれ	(2025年4月1日施行の建築基準法改正では、小規
			ることとなった。」の後	模な伝統的木造建築物等について、構造設計一級
			に追加	建築士が設計又は確認を行い、専門的知識を有す
				る建築主事等が建築確認審査を行う場合は、構造
				計算適合性判定が不要となった)。
目次	4	下 10	8.2 節タイトルの変更	8.2 軟弱地盤対策と液状化対策
1章	15	最初の行	加速度応答スペクトル	必要性能スペクトル:等価な1質点系モデルに作
			の次に追加	用する地震力と変形を表す。稀に発生する
				地震動、極めて稀に発生する地震動などに
				対応して等価周期と等価減衰から決まる加
				速度応答スペクトルをせん断力と変形の関
				係に変換したスペクトル(例えば図 5.14 中
				の破線)と原点から等価剛性(周期)の傾
				きを持つ直線との交点が求まる。変位の増
				分に対応して等価減衰を変化させて両者の
				交点を結んで描いた線(図 5.14 中の太い実
				線)が必要性能スペクトルとなる。この必
				要性能スペクトルと建築物の等価復元力の
				交点が真の応答値となる。
1章	16	上 5	用語の追加	構造階高:構造軸組の梁などの横架材の中心間の
				距離。1階階高は、土台と2階梁との中心間
				距離、石場建ての場合、礎石天端から2階
				の梁中心までの距離。なお、本書で「階高」、
				「階局さ」と記している箇所があるが、「構
				置階局」の意味である。
				各層の局さ:構造 軸組の 梁などの 横架材の 中心レ
				ヘルを基準として設定する構造階高でめ
1	16		田) 、 フ	
	16	上 8	用いることかかめる	用いることがある
	1/	上 3	RC0 「共会したて、決然悔し	
2 早	18	上4	「対家とする…)建築物と	刈家とする…建築物とする。水平抵抗要素として
			タ る。」の彼に迫加する	は、伝統的傳伝に行用の入さな変形性能を生かす
) 幸	1			ことがてさる博坦安糸とりる。
レム早	25	下 15	耐雪肿能のカラテリマ	耐雪枡能のカライテリア
2 李	25	下 15	耐震性能のクラテリア	耐震性能のクライテリア 加速度広気スペクトル $(\mathbf{C} = \mathbf{C})$ た管字ナス

章	頁	行	誤	正
4 章	44	下 3	1)~4)	1~4
5 章	68		(5.9)式左辺の <i>h</i>	h _{eq}
5 章	71	上3から	「各ステップ…になる。	本マニュアルの近似応答計算では、変位(変形
		8	こうして、」を変更	角 y)を増分させてステップごとに仮の応答値(変
				形、せん断力) (y _n , Q _n) を計算する。各ステップ
				での建築物の等価減衰に対応した加速度応答スペ
				クトルをせん断力と変形の関係に変換したスペク
				トル(図 5.14 中の破線)と等価剛性の傾きを持つ
				直線との交点が各ステップでの仮の応答値とな
				る。各ステップごとの仮の応答値を結んだ線(図
				5.14 中の太い実線)を必要性能スペクトルと呼ぶ。
				この必要性能スペクトルと建築物の等価復元力の
				交点が真の応答値 (γ_R, Q_R) となる。実際の計算で
		1		
5章	72	上15	2 質点モデル変形モード	2 質点モデルの変形モード
5 草	72	下 4 〒 a	応答結果を	応答結果は
5 草	75	► 2	$\gamma_2 = \delta_2 / H_2$	$\gamma_2 = (\delta_2 - \delta_1) / H_2$
5 章	76	図 5.22(b)	横軸の δ_2 (2 カ所とも)	$\delta_2 - \delta_1$
5 草	76	凶 5.22(b)	計算式 $u_2 - Q_2/k_{02}$ …に誤	$(\delta_2 - \delta_1) - Q_2/k_{02}$
			9	$= (\delta_2 - \delta_1) - k_2 (\delta_2 - \delta_1) / k_{02}$
	70			$= (\delta_2 - \delta_1) (1 - k_2/k_{02})$
5 早	79	図 5.23(b) 工 12	図中の凡例の修正	極佈地震の凡例を削除
)早 7 辛	84	下 13 百下	偏心半を ま 71 の粉値な用い	偏心学か
/ 早	92	貝卜	「…衣 7.1 の奴値を用い	なわ、衣 /.1 の下は、四万左寺にわいて氾圧してい て販売取出なテレズ() 広告如けを掲加なテレ
			してもよい。」の下部に読	○ 対面形状を小している。 灰色部は入損部を小し、 □ 古美(咪辺) たたいては - 断五係粉計管軸(断
			りて但此	二万左 (例2) においては、例面示数可异轴(例 面を 9 笙公する位置に仮定)に対して対称近似し
				面を2 寺方,る位置に仮足)に対じておいて上辺に
				接した欠損部の図部分け欠損がかいものとし 下
				辺に接している図部分に欠損があるとみたして
				断面係数を算定している。
7 章	93	表 7.1	表 7.1 下部の断面欠損の	正誤表6頁目上段の図に差し替え
			図 図	
7 章	98	(7.11)式	$L_x \ge L_v$ の添字に誤り	$(L_{\mathbf{x}})(L_{\mathbf{y}})$
				$N = \left(\frac{\pi}{p} + 1\right) \left(\frac{\pi}{w}\right) \tag{7.11}$
7 章	99	上9	N: 釘の接合点数	N:板と床梁または根太の接合点数
7 章	100	(7.14)式	式に誤り	$M_{aF}\cos\theta$ (7.14)
				$\Delta P_{aF} = \frac{1}{L_x L_y} \tag{7.14}$
7 章	100	(7.15)式	式に誤り	$M_{aF} = P_{na}dN \tag{7.15}$
7 章	100	(7.16)式	$L_x \ge L_y$ の添字に誤り	$N = \left(\frac{L_x}{p} + 1\right) \left(\frac{L_y}{w\cos\theta}\right) \qquad (7.16)$
7 章	101	上7	N: 釘の接合点数	N:野地板と垂木の接合点数
7 章	103	図 7.7	図中の部材名称	木鼻(下端雇い受け)、木鼻(上端雇い受け)
				析、梁を横架材に修正
7 章	108	最下行	追記	特に下屋がある場合には隅角部、外周部の柱
				脚については注意を要する。

章	頁	行	誤	正				
7 章	109	上 7	場合の柱と礎石との摩	場合の柱脚部が有する摩擦力				
			擦力					
7 章	109	上15	④礎石に関する留意点	柱脚に作用する水平力の割増係数 k は、平成 24 年				
			の前に追加	度に検討委員会において実施した E ディフェンス				
				震動台実験で伝統構法石場建て部分2階建て下屋				
				付き試験体(試験体 No.5(地長押なし))による				
				実験を詳細に検討した結果から、曲げ剛性に応じ				
				て割り振った曲げモーメントの対応関係による割				
				増係数を提案した。同時に行った実験(試験体 No.6				
				(地長押あり))から、②柱脚の移動に伴う留意点				
				でも記したように外周部や主要な通りなどの柱脚				
				部に地長押などを設けることは、柱脚の折損に対				
				して有効であることがわかった。				
7章	109	下 15	柱芯が礎石から落下す	柱芯が礎石端からはみ出さないように、				
			ることのないように、					
8章	112	下 15	8.2節タイトルの変更	8.2 軟弱地盤対策と液状化対策				
8章	112	下 14	(2)を変更	(2) 地盤調査に基づき Gs を算出する場合は、「液				
				状化しないこと」あるいは「液状化の程度が軽微				
				であること」を確認する。この条件を満足しない				
				場合は、適切な液状化対策を実施することか必要				
0 *	110	T 0						
8 早	112	r 8	「彼仄化するり能性もめ	被状化する可能性もある。表 8.1 に 小規模建築				
			る。」の俊に追加	初基礎設計指針』(日本建築字会)に掲載されてい				
0 斉	112	下 4	「地般調本に甘べき C ち	る小円化「利果を小り。 地般調本に其べき C な管田才を担合け 長士加速				
0 早	112	`4	「地盛神宜に奉うさし」を	地盤調査に基づさ G_s を昇山りる場合は、取入加速 度 $150ml$ ドレビオレズ「海伊ルしないこと」 - 早				
			昇山りる吻口は、一社(M) でなる≻した前担」た亦	反 150gal 以上に対して「拡低化しないこと」、取 十加速度 350gal 以上に対して「液性化」ないこと」				
			「一一」であることを削近」を及	「液状化の程度が軽微であること」またけ「液状				
			\sim	化による危険度が低いことを前提				
8章	112	下3	2015 年版	2020 年版				
8章	112	下2	『小規模…に示されてい	削除				
0 1		' -	3					
8章	112	下 2	- 「表 8.1 の」の前に文を追	液状化判定については、『建築基礎構造設計指針』、				
			加	『小規模建築物基礎設計指針』による手法が挙げら				
				れるが、調査費や適用限界の問題が指摘される。				
				また、液状化対策についても個々の宅地で対策を				
				行うには工事費の問題がある。行政と連携して広				
				域的な液状化対策は地域防災力の向上にもつなが				
				る ⁶⁾⁷⁾ 。表 8.1 の				
8章	113	下 3	「参考にするとよい。」	また、基礎をべた基礎とすることは、不同沈下対				
			の後に追加	策に有効で、かつ噴砂現象による1階床等の被害				
				を防ぐことができるので、液状化対策の一つの現				
				実的で有効な方法と考えられる。				
8章	114	参考文献	1)「2001 年」を変更	2019 年				
8章	114	参考文献	5)「2015 年」を変更	2020年				
8章	114	参考文献	6)、7)を追加	6) 国土交通省都市局都市安全課『市街地液状化対				

章	頁	行	誤	正
				策推進ガイダンス』、2014年策定、2019年改定
				7) 国土交通省都市局都市安全課『リスクコミュニ
				ケーションを取るための液状化ハザードマップ作
				成の手引き』2021年
9章	125	上5から	「本計算では、…0.05 と	本計算では、履歴減衰の下限値を 0.05 とし、計算(5
			している。」を変更	章中(5.26)式、(5.27)式)に用いる初期剛性 k ₀₁ 、
				k02は1/480時の剛性とし、(5.26)式、(5.27)式の各
				式右辺の第二項の+0.05 を用いずに安全限界近傍
				での減衰を低めに評価している。
9章	126	上3から	「変形増大率…を確認し	当該変形に応じた剛性により偏心率を算定し、偏
			た(表 9.1-8)。」を変更	心率が 0.15 を超える 1 階張り間方向については応
				客増幅率(1.23)を乗じた応答変形角が1/161×1.23
				=1/131 でクライテリア 1/120 以内に収まることを
				確認した(表 9.1-8)。
9 章	126	表 9.1-8	表 9.1-8	止誤表6月目中段の表に差し替え
9草	127	表 9.1-9	表 9.1-9	止誤表6月目下段の表に差し替え
9 章	127	图 9.1-9	I 19.1-9	止誤表7負目上段の凶に差し替え
9 章	9.2 筤	がは別途		
10 草	178	上1	2) 構造上の特徴と構造	2) 構造上の特徴と耐震診断の万針
10 *			設計万針 〒10211() (1)	
10 草	223	图 10.3-11	図 10.3-11 (a)、 (b)	(a)、(b)の図を入れ替える
10 草	232	表 10.3-17	表中の「補強前」	
10 草	232	► 3	けた行方向で 188mm、張	けた行万回で 166mm、張り間万回で 154mm
	0.5.1		り間万同で 176mm	
設計資料2	254	图 2.3	(c) 縮約モアル応答結果	正課表7月目下段の凶に差し替え
設計資料2	255	表 2.2	エクセルシートに誤り	止誤表9員日の表に差し替え
設計資料2	256	图 2.5		1/100
	265	T a	の下端 1/10	
設計資料2	265	下 2 一 一 つ	(2.37)式	
設計資料2	266	Γ2	通常の限界耐力計算の	通常の限界耐力計算により必要性能スペクトル
			応答 (図 2.17 OB 尻) に	(x_i, Q_n) か待られる。図 2.17 の杜脚滑りせん断力
			より x_t か待られる。凶	
			2.17の応答せん断力とし	
	070	T 0	(
	278	Гð	③ 伸刀 千 住 の 計 鼻 の 計 歯	③弾刀千住の計算
	279	T (ΣV
	278		$\Sigma K_{x1/120}$	$\Sigma K_{x1/20}$
	278	F 3	$\Sigma K_{y1/120}$	$2K_{y1/20}$ (腔网UML (公古捷子网UML) /) 大社大大古网UML の
設計資料3	282	上 I	(壁剛性 (鉛固備面剛	
			$ 1 \pm \rangle s$ に対する床剛性 k	
	200	L C	いれ) 11営社田ベキア 主 17	11倍/1日 べたて まっった
□	288		可昇柏木じめる。衣 3.7 た	司 昇 柘 大 じの 勾 ズ 3.1 を
<u></u>	202	 ⊢ າ1	د. × 180mm	× 18mm
□ 取□ 貝科 4	272		(a) h = H	(a) h - H - h
↓	298	凶 4./	(a) //1- <i>ロー</i> 溢み / 座	
	1		世紀の例	Me Ne Vel

章	頁	行	誤	E
			曲げは生じ	曲げは生じない
			(b)逆せん断	(b)逆せん断 <u>Qc1</u> /2
設計資料4	305	下 6	$ au_S/ au_B$	$ au_B/ au_S$
		下7		
設計資料4	305	式 4.31	3.25ts (2 力所)	$3.25\tau_B$
設計資料4	306	式 4.32	$ au_B$	τ_S
設計資料4	314	上 4	鼻栓打・ち込み栓打ち割	鼻栓打ち・込み栓打ち・割り楔締め
			り楔締め	
設計資料4	314	図 4.28	図中の鼻木	木鼻
設計資料4	328	上6	実験によるとでは、	実験によると、
設計資料4	332	表 4.14	束 45×60mm の値修正	正誤表8頁目上段の表に差し替え
設計資料4	333	図 4.52		正誤表8頁目下段の図に差し替え
設計資料4	337	上 4	「近似的に求めることと	なお、突出のないはしご型フレームの耐力は実
			する。」の以下に追加	験的検証をもとに表 4.14 の数値を提案している
				が、突出した場合の算定法は T 字型仕口の実験と
				シミュレーションに基づく推定によるものであ
				る。束の突出による耐力増大は実験的に認められ
				るものの、ばらつきもあり、まだ定量的に十分に
				検証できていないので、増大率を設計に組みこむ
				ことは難しい。今後、束突出の増大効果などは部
				材の降伏・破壊などの性状を含め、より多くの実
				験による検証とともに理論解析的な検証も行う必
				要がある。
設計資料4	337	上 12	$\gamma riangle L = \gamma L \times \frac{\Delta L}{H}$	$\gamma \Delta L = \gamma L \times \frac{\Delta L}{L}$
おわりに	348	下 6	法改正に伴い、「4 号相当	旧 4 号建築物相当の小規模な伝統的木造建築物等
			の建築物を構造計算適	について、構造計算適合性判定の対象外となる規
			合性判定の対象から除	定が制定されたが、対象外となる要件が厳しいの
			外するとともに」を変更	で、要件が整う環境の整備や要件の見直しととも
				12

■126頁、表 9.1-8 差し替え

表 9.1-8 偏心率の算定(加力方向 1/120rad、加力直交方向 1/120rad 時)

		剛性	重心	剛心	偏心距離	捩り剛性	弾力半径	偏心率
聚	方向	K [kN/m]	g [m]	<i>l</i> [m]	<i>e</i> [m]	K_R [kN·m]	r_e [m]	R_e
O RHK	張り間X	2605.6	5.940	6.329	-0.39	53170	6.076	0.06
イド白	けた行 Y	5221.3	3.336	3.111	0.22	96187	4.292	0.05
1階-	張り間X	3801.8	6.435	7.560	-1.13	84027	6.051	<u>0.19</u>
	けた行 Y	7205.3	3.070	3.213	-0.14	139220	4.396	0.03

■127 頁、表 9.1-9 差し替え

表 9.1-9 偏心率の算定(加力方向 1/20rad、加力直交方向 1/90rad 時)

		剛性	重心	剛心	偏心距離	捩り剛性	弾力半径	偏心率
階	方向	K [kN/m]	<i>g</i> [m]	<i>l</i> [m]	e [m]	$\frac{K_R}{[kN \cdot m]}$	r _e [m]	R_e
0 17HK	張り間 X	976.7	5.940	6.157	-0.22	15897	7.364	0.03
乙四	けた行 Y	1269.4	3.336	3.135	0.20	58359	6.780	0.03
1 REE	張り間 X	1403.8	6.435	6.982	-0.55	28492	7.353	0.07
一喝	けた行 Y	1847.5	3.070	3.276	-0.21	90103	6.984	0.03

■254頁、図 2.3(c) 差し替え

同転角	[rad]	1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
回知円	$[\times 10^{-3} rad]$	2.08	4.17	8.33	11.11	16.67	22.22	33.33	50.00	66.67	100.00
束45	5 imes 45mm	0.04	0.09	0.19	0.25	0.38	0.51	0.69	0.83	0.94	1.13
束45	5 imes 60mm	0.06	0.12	0.23	0.31	0.47	0.63	0.86	1.03	1.15	1.36
束60) × 60mm	0.07	0.14	0.28	0.37	0.56	0.74	1.13	1.49	1.71	2.06
束60) × 75mm	0.09	0.17	0.34	0.46	0.69	0.91	1.36	1.72	1.96	2.35
束60) × 90mm	0.10	0.19	0.38	0.51	0.77	1.04	1.47	1.85	2.10	2.54
東75	×120mm	0.27	0.54	1.08	1.46	2.05	2.36	2.78	3.25	3.63	4.31
束90	束90×150mm		0.94	1.87	2.63	3.66	4.24	4.98	5.78	6.47	7.67

表 4.14 特定回転角時の曲げモーメント M(仕口1カ所あたりの復元カモーメント) [kN·m]

■333 頁、図 4.52 差し替え

図 4.52 はしご型フレームの復元力特性(仕口 1 カ所あたりの復元カモーメント)

■255 頁、表 2.2 差し替え

r;	A	B ∋I \\\\\\	C	D O 7H: H: We	E	F	G	H	1	J	К	<i>L</i>	M
	収敗	計昇法 2		2 階基準									
3	建物諸元	重量 <i>W</i>	質量 m	階高 H	$Q_{1/30}$	C_i	Rw	0.750		地域・	地盤	g_v	2.025
4	階	kN	t	m	kN	-	RH	0.800		地域 Z	1.0	T_{u}	0.864
.5	2F	60	6.1	2.4	57.8	0.964	Rco	1.340		地盤種別	2	T_{G1}	0.640
6	1F	80	8.2	3	144.6	1.033	C_2/C_h	0.933				Ta	0.864
7	合計	140	14.3	5.40			隆伏階	2 階×				- 02	
8	ЦН	110	1 110	5110			1+1414	210.1					I
9	復元	力		1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
10	γ	rad	0	0.0021	0.0042	0.0083	0.0111	0.0167	0.0222	0.0333	0.0500	0.0667	0.1000
11	Q_2	kN	0	14.9	27.3	49.6	55.1	66.1	63.3	57.8	49.6	41.3	24.8
12	Q_1	kN	0	37.2	68.1	123.9	137.7	165.2	158.3	144.6	123.9	103.3	62.0
13	K_{e2}	kN/m		2,974	2,726	2,478	2,065	1,652	1,187	723	413	258	103
14	K_{e1}	kN/m		5,947	5,452	4,956	4,130	3,304	2,375	1,446	826	516	207
15	$\Delta Q_1 / \Delta \gamma_I$			17,842	14,868	13,381	4,956	4,956	-1,239	-1,239	-1,239	-1,239	-1,239
16	ω^2	1/s ²		270.5	248.0	225.4	187.9	150.3	108.0	65.8	37.6	23.5	9.4
17	u_2/u_1			2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257	2.257
18													
19	1 質点系~	の縮約		1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
20	2 階刻 δ ₂ -δ ₁	m		0.005	0.010	0.020	0.027	0.040	0.053	0.080	0.120	0.160	0.240
21					繰り返し	计算開始	初期値は	$\delta_1 = (\delta_2 - \delta_1)/(\delta_2 - \delta_1)/(\delta_1$	(u_2/u_1-1)				
22	δ_1 ^{初期值}	m		0.004	0.008	0.016	0.021	0.032	0.042	0.064	0.095	0.127	0.191
23	δ_1	m	インプット	0.004	0.007	0.015	0.016	0.018	0.016	0.013	0.010	0.008	0.004
24	δ_2	m		0.009	0.017	0.035	0.042	0.058	0.069	0.093	0.130	0.168	0.244
25	δ_{l}/H_{1}			0.0013	0.0025	0.0049	0.0052	0.0061	0.0053	0.0042	0.0033	0.0026	0.0014
26	$K_{e2}^* = K_{e2}$	kN/m		2,974	2,726	2,478	2,065	1,652	1,187	723	413	258	103
27	Kel*内挿	kN/m		5,947	5,798	5,310	5,251	5,140	5,246	5,439	5,586	5,762	5,947
28	ω^{2*}	1/s ²		270.5	256.5	234.1	212.5	185.4	149.7	102.0	62.4	40.2	16.6
29	u_2/u_1^*			2.257	2.359	2.372	2.703	3.195	4.389	7.373	13.291	22.050	57.290
30	δ_1^*	m	アウトプット	0.004	0.007	0.015	0.016	0.018	0.016	0.013	0.010	0.008	0.004
31						繰りi	反し計算終	·了					
32	階別の減衰	1 階 h		0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050
33	戻り 1/120	2 階 h		0.050	0.050	0.050	0.077	0.103	0.133	0.163	0.183	0.193	0.203
34	重みづけ h			0.050	0.050	0.050	0.064	0.081	0.109	0.145	0.172	0.186	0.200
35	M_u	t		12.3	12.1	12.1	11.5	10.9	9.7	8.3	7.4	6.9	6.4
36	Δ	m		0.007	0.014	0.027	0.034	0.046	0.057	0.080	0.119	0.158	0.239
37	$M_u/\Sigma m$			0.86	0.85	0.85	0.81	0.76	0.68	0.58	0.52	0.48	0.45
38	Q_e	kN	0	23.7	42.7	77.4	82.2	93.7	82.6	68.3	54.5	43.8	25.4
39	Ke	kN/m		3,322	3,103	2,827	2,453	2,016	1,457	850	459	276	106
40	Te	sec		0.38	0.39	0.41	0.43	0.46	0.51	0.62	0.80	0.99	1.54
41	$\Delta W^{\otimes n}$			0.00	0.00	0.00	0.00	0.00	0.11	4.22	9.29	12.59	13.44
42	W W			0.08	0.29	1.06	1.38	2.18	2.34	2.74	3.24	3.47	3.03
43	縮約 h [∞]			0.050	0.050	0.050	0.050	0.050	0.054	0.173	0.278	0.339	0.403
44	Fh			1.00	1.00	1.00	0.91	0.82	0.71	0.61	0.55	0.52	0.50
45	H_{e}	m	0	4.51	4.53	4.54	4.61	4.69	4.84	5.03	5.18	5.26	5.55
46	Ye	rad	0	0.0016	0.0030	0.0060	0.0073	0.0099	0.0117	0.0160	0.0229	0.0301	0.044 /
47	0/21副	1-11/ 1		1/633	1/330	1/160	2 991	1/101	6 1 2 2	2 251	1/44	1/33	1/22
48	Qe-ye ABL	KIN/rad		14,977	13,082	0.85	3,001	4,550	-0,155	-5,551	-1,972	-1,490	-1,207
49	2 陌建 C p			0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
50	<u>9</u> 抽般 C			1.00	1.00	1.00	1.00	1.00	1.10	1.20	1.43	2 025	2 025
52	PECIME Us			1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.005	2.023	2.023
53	稀地	震		1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
54	S_0	m/s ²		1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.42	1.18	0.78
55	S_A	m/s ²		2.04	2.04	2.04	1.87	1.69	1.62	1.63	1.68	1.71	1.16
56	$S_D = \Delta_e$	m		0.008	0.008	0.009	0.009	0.009	0.011	0.016	0.026	0.036	0.058
57	Q_n	kN	0	25.0	24.7	24.6	21.5	18.3	15.6	13.4	12.1	10.0	6.1
58	a t	rod	0	0.0017	0.0018	0.0019	0.0019	0.0019	0.0022	0.0031	0.0051	0.0069	0.0108
59	γn	Idu		1/598	1/570	1/520	1/525	1/518	1/451	1/320	1/197	1/145	1/93
60	$Q_n - \gamma_n$ 勾配	kN/rad		14,977	-4,416	-269	187,106	-124,171	-9,310	-2,459	-673	-1,143	-994
61	交差判定			0	1	0	0	0	0	0	0	0	0
63	Sm	m	U	0.010	0.010	0.011	0.011	0.011	0.013	0.018	0.029	0.038	0.059
61	δ _{R1}	m		0.004	0.004	0.005	0.004	0.004	0.003	0.002	0.029	0.000	0.009
65	UAI	111	0	0.007	0.007	0.003	0.003	0.003	0.004	0.002	0.011	0.002	0.001
66	γ <i>R</i> 2	rad		1/453	1/415	1/377	1/344	1/308	1/238	1/153	1/90	1/66	1/41
67			0	0.001	0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.000
68	γ_{R1}	rad	Y	1/712	1/705	1/647	1/732	1/844	1/1007	1/1220	1/1389	1/1728	1/2915
69													
70	極稀均	也震		1/480	1/240	1/120	1/90	1/60	1/45	1/30	1/20	1/15	1/10
71	S_0	m/s ²		8.00	8.00	8.00	8.00	8.00	8.00	8.00	6.43	5.17	3.32
72	SA	m/s ²		10.20	10.20	10.20	9.32	8.40	8.02	8.01	8.19	7.28	4.78
73	$S_D = \Delta_e$	m		0.038	0.040	0.044	0.044	0.045	0.054	0.079	0.131	0.181	0.288
74	Q_n	kN	0	125.2	123.4	123.2	107.6	91.3	78.1	66.9	60.3	50.0	30.6
75	v_n	rad	0	0.0084	0.0088	0.0096	0.0095	0.0097	0.0111	0.0156	0.0254	0.0344	0.0539
76	/"			1/120	1/114	1/104	1/105	1/104	1/90	1/64	1/39	1/29	1/19
77	$Q_n - \gamma_n$ 勾配	kN/rad		14,977	-4,416	-269	187,106	-124,171	-9,310	-2,459	-673	-1,143	-994
78 79	交差判定		0	0	0	0	1	0	0	0	0	0	U

表 2.2 2 階先行降伏:収斂計算法 2(2 階基準ステップ)

0.055

0.020

0.015

1/69

0.007 1/146

0.057

0.018

0.016

1/62

0.006 1/169

0.065

0.015

0.021

1/48

0.005

1/201

0.091

0.012

0.033

1/31

0.004

1/244

0.191

0.009

0.076

1/13

0.003

1/346

0.144

0.011

0.055

1/18

0.004

1/278

0.295

0.005

0.121

1/8

0.002

1/583

0.048

0.021

0.011

1/91

0.007

1/142

0.050

0.021

0.012

1/83

0.007

1/141

0.055

0.023

0.013

1/75

0.008

0

0

m

m

rad

rad

 δ_{R2}

 δ_{R1}

γr2

γrı

84 85